

Restoring Images in Adverse Weather Conditions via Histogram Transformer

Shangguan Sun^{1,2}, Wengi Ren³, Xinwei Gao⁴, Rui Wang^{1,2}, Xiaochun Cao³ ¹CAS, China ²UCAS, China ³Shenzhen Campus of SYSU, China ⁴Tencent

Introduction & Analysis

Weather-induced degradation patterns tend to be similar but distinct from the background.

Traditional self-attention is performed either along channel dimension or within a fixed range.

Spatial Self-Attention

Weather-affected patterr

We categorize pixels affected by adverse weather and background pixels into distinct bins based on descending intensities and then conducts selfattention within and between bins.

Proposed Method: Histogram Transformer listogram Transformer Blog Layer Norm 0 ··· 3 ··· ·· 2 1 ··· 4 ··· ·· ·· 3 ··· 2

Experiments Quantitative Results on Adverse Weather Removal

(a) Image Desnowing				(b) Deraining & Dehazing			(c) Raindrop Removal			
	Snow10 PSNR	00K-S [44 SSIM	4]Snow10 PSNR	00K-L [44] SSIM		Outdoo PSNR	r-Rain [32] SSIM		RainD PSNR	rop [57] SSIM
SPANet [73] JSTASR [8] RESCAN [34] DesnowNet [44] DDMSNet [94] NAFNet [6] Restormer [86]	$29.92 \\ 31.40 \\ 31.51 \\ 32.33 \\ 34.34 \\ 34.79 \\ 36.01$	$\begin{array}{c} 0.8260\\ 0.9012\\ 0.9032\\ 0.9500\\ 0.9445\\ 0.9497\\ 0.9579\end{array}$	$\begin{array}{c} 23.70 \\ 25.32 \\ 26.08 \\ 27.17 \\ 28.85 \\ 30.06 \\ 30.36 \end{array}$	0.7930 0.8076 0.8108 0.8983 0.8772 0.9017 0.9068	CycleGAN [98] pix2pix [20] HRGAN [32] PCNet [21] MPRNet [87] NAFNet [6] Restormer [86]	$17.62 \\ 19.09 \\ 21.56 \\ 26.19 \\ 28.03 \\ 29.59 \\ 30.03$	$\begin{array}{c} 0.6560\\ 0.7100\\ 0.8550\\ 0.9015\\ 0.9192\\ 0.9027\\ 0.9215 \end{array}$	pix2pix [20] DuRN [42] RaindropAttn [59] AttentiveGAN [57] IDT [78] MAXIM [69] Restormer [86]	$\begin{array}{c} 28.02\\ 31.24\\ 31.44\\ 31.59\\ 31.87\\ 31.87\\ 32.18 \end{array}$	$\begin{array}{c} 0.8547 \\ 0.9259 \\ 0.9263 \\ 0.9170 \\ 0.9313 \\ 0.9352 \\ \underline{0.9408} \end{array}$
All-in-One [33]* TransWeather [70] Chen et al. [10] WGWSNet [100] WeatherDiff ₆₄ [53] WeatherDiff ₁₂₈ [53 AWRCP [82]* Histoformer (Ours)	32.51 34.42 34.31 35.83 35.02 <u>36.92</u> 37.41	0.9341 0.9469 0.9460 0.9566 0.9516 <u>0.9652</u> 0.9656	28.33 29.31 30.22 30.16 30.09 29.58 <u>31.92</u> 32.16	0.8820 0.8879 0.9071 0.9007 0.9041 0.8941 0.9341 0.9261	All-in-One [33]* TransWeather [70] Chen et al. [10] WGWSNet [100] WeatherDiff64 [53] WeatherDiff128 [53 AWRCP [82]* Histoformer (Ours)	24.71 28.83 29.27 29.32 29.64] 29.72 <u>31.39</u> 32.08	0.8980 0.9000 0.9147 0.9207 0.9312 0.9216 <u>0.9329</u> 0.9389	All-in-One [33]* TransWeather [70] Chen et al. [10] WGWSNet [100] WeatherDiff64 [53] WeatherDiff128 [53 AWRCP [82]* Histoformer (Ours)	31.12 30.17 31.81 <u>32.38</u> 30.71] 29.66 31.93 33.06	0.9268 0.9157 0.9309 0.9378 0.9312 0.9225 0.9314 0.9441

(a) Input

Experiments

Person	87%	A MARKE	Person	84%
Door	75%		Person	80%
Door	74%		Door	77%
Person	74%		Door	77%
Jeans	69%		Jeans	71%
Coat	61%		Coat	68%
			Building	86%
Building	89%		Building	83%
Building	81%		Building	81%
Building	79%		Building	77%
Building	72%		Building	77%
Building	72%	Bar my le Minister (1991) (brudt # 1.	Building	55%
				0010

(b) Deweathered by ours